IOPScience

Home

Search Collections Journals About Contactus My IOPscience

Geant4 Computing Performance Benchmarking and Monitoring

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2015 J. Phys.: Conf. Ser. 664 062021
(http://iopscience.iop.org/1742-6596/664/6/062021)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 137.138.93.202
This content was downloaded on 09/03/2016 at 08:07

Please note that terms and conditions apply.

iopscience.iop.org

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/664/6
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062021 doi:10.1088/1742-6596/664/6/062021

Geant4 Computing Performance Benchmarking and
Monitoring

Andrea Dotti!, V. Daniel Elvira?, Gunter Folger?, Krzysztof Genser?,

Soon Yung Jun?, James B. Kowalkowski’> and Marc Paterno?
'SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA, 94025, USA

2Fermilab’, P.O. Box 500, Batavia, IL, 60510, USA
3CERN, PH Department, J27210, CH-1211 Geneva, Switzerland

E-mail: syjun@fnal.gov

Abstract. Performance evaluation and analysis of large scale computing applications is
essential for optimal use of resources. As detector simulation is one of the most compute intensive
tasks and Geant4 is the simulation toolkit most widely used in contemporary high energy physics
(HEP) experiments, it is important to monitor Geant4 through its development cycle for changes
in computing performance and to identify problems and opportunities for code improvements.
All Geant4 development and public releases are being profiled with a set of applications that
utilize different input event samples, physics parameters, and detector configurations. Results
from multiple benchmarking runs are compared to previous public and development reference
releases to monitor CPU and memory usage. Observed changes are evaluated and correlated
with code modifications. Besides the full summary of call stack and memory footprint, a detailed
call graph analysis is available to Geant4 developers for further analysis. The set of software tools
used in the performance evaluation procedure, both in sequential and multi-threaded modes,
include FAST, IgProf and Open|Speedshop. The scalability of the CPU time and memory
performance in multi-threaded application is evaluated by measuring event throughput and
memory gain as a function of the number of threads for selected event samples.

1. Introduction
Geant4 [1]]2][3] is a toolkit for the simulation of particles passing through and interacting with
matter. Its areas of application include high energy, nuclear and accelerator physics, as well
as studies in space and material science, medicine, biology, security and industrial applications.
In high energy physics (HEP), Geant4 simulation applications are indispensable in the design
of the detector in the planning phase, in developing and optimizing the particle reconstruction
algorithms, and in simulating the signal and background events associated with the actual data
analysis during data taking. As the most commonly used detector simulation tool, Geant4 plays
a critical role in the simulation of detectors at the existing and future experiments and facilities.
Geant4-based simulations are very complex and are some of the most compute-intensive tasks
in experimental HEP. Throughout the LHC Run-I, more than half of WLCG (Worldwide LHC
Computing Grid) [4] has been dedicated to the simulation of about 10'° high energy events
(equivalent of 10'? sec CPU time). Similar simulation computing needs are expected in the

9 Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States
Department of Energy.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062021 doi:10.1088/1742-6596/664/6/062021

LHC Run-II. Therefore, it is important to monitor Geant4 throughout its development cycle for
changes in computing performance to assure optimal use of computing resources and to promote
good software practices.

The testing and quality assurance working group of the Geant4 collaboration conducts
computing performance evaluation of Geant4 applications for all Geant4 development and public
releases. The group roles are: monitoring of Geant4 software for any expected and unexpected
changes in the computing performance, identification of problems and opportunities for code
improvement and optimization, and communication of the results and findings to the appropriate
Geant4 working group leaders and developers. In this paper, the procedure of Geant4 computing
performance benchmarking and profiling is briefly described and selected results are presented.

2. Profiling Tools and Software

Geant4 applications incorporate a large body of physics knowledge from modern high energy
and nuclear physics, from theory and from experiments. The applications tend to be large
in both required compute time and memory space, mainly because of the complex geometries
through which particles will be propagated. This complexity has made it challenging to find
tools that can profile these applications systematically, producing results that are accurate and
reproducible. A good tool must provide a robust mechanism for profile data collection over long
time periods to accumulate sufficient statistics for generating a faithful performance profile of
the application. The tool must also have minimal impact on the application with regards to
overall run-time (for practical purposes) and changing the overall performance (not reflecting
reality). The Geant4 developers must also be able to easily use the tool. In general, a good
sampling profiler have been found to meet the many of these needs.

The set of software tools used in the current Geant4 performance evaluation procedure include
FAST [5] and IgProf [6] for sequential applications, and Open|Speedshop [7] for applications that
include multi-threading. TAU [8] and HPCToolkit [9] are also used for internal code reviews
and other performance studies.

Three applications suitable for performance analysis and benchmarking are built using each
new Geant4 release:

e SimplifiedCalo was developed to emphasize computing performance aspects of physics
processes and models. It employs a sampling calorimeter with a simple cylindrical geometry,
with repeating concentric layers of an absorber material and an active volume.

e cmsExp was developed for an extended measure of performance in a typical, complex HEP
detector. It uses the Geometry Description Markup Language (GDML) interface to read a
simplified CMS [10] detector geometry and a magnetic field map extracted from the CMS
software suite.

e cmsExpMT is the multi-threaded version of cmsExp.

The 4.9.2 version of GCC is currently used with the default Geant4 optimization level (—02).
R [11] and ROOT [12] are used as statistical and visualization tools for post analysis and for
presentation and summarizing results.

3. Profiling Platform
Performance benchmarking and profiling requires a stable set of 'quiet’ machines free from
uncertainties due to hardware fluctuations, changes in software and system configurations, and
interruptions due to network activity. This dedicated set of machines must capable of providing
sufficient computing resources (CPU and memory) to collect significant sampling data for all
relevant input parameter combinations and deliver results within the required time constraints.
The Fermilab Wilson cluster provides the primary hardware platform used for profiling and
benchmarking Geant4 releases. It is also used to run relevant parts of the test suite. The

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062021 doi:10.1088/1742-6596/664/6/062021

cluster worker nodes are equipped with four 8-core 6128HE 2.0GHz AMD Opteron processors.
The dedicated head node provides NFS access to the Geant4 disks for long-term storage. The
head node is also used for software builds, batch job submission, and for final analysis of the
performance data. Standard release profiling requires 2500 CPU-hours on this cluster. A detailed
description of the Wilson cluster can be found at the link [14]. In addition, a standalone 32-core
AMD server and an Intel Xeon Phi server node are available for benchmarking multi-threaded
Geant4 applications.

To minimize performance measurement uncertainty, a reference release (typically the previous
release) is re-compiled and re-profiled along with a new release of Geant4. The NUMA controls
are used to lock Geantd processes to specific cores to eliminate performance effects that can
occur from any core-to-core process migration that might take place. The system activity is
collected during performance runs using the standard Linux System Activity Data Collector
(sadc) and processed with sar. Performance measurements are reproducible, with uncertainties
due to hardware and system fluctuations, usually within +0.5%.

4. Performance Monitoring

Performance monitoring is an integral part of performance evaluation which requires quantitative
measurements of changes in utilization of computing resources such as CPU consumption and
memory footprint. Since Geant4 consists of large sets of modules such as of e.g. tracking kernels,
physics processes and models, geometry shapes and materials, it is a challenge to detect all
expected or unexpected changes in performance. All development and public releases are being
profiled with a set of applications that utilize different input event samples, physics parameters,
and detector configurations. Results from multiple benchmarking runs are compared to previous
public and development reference releases to monitor changes in CPU and memory usage.
Figure 1 shows the current list of samples used in regular profiling. Each specific sample is
profiled multiple times with a given number of events to collect statistically significant data.
For an example, the physics sample containing 50 events of H — ZZ (Z to all channels) is
profiled in 128 runs distributed over available batch nodes while each single particle sample is
profiled 32 times using 2000 (10, 50 GeV), 4000 (5 GeV), 10000 (1 GeV) events with energy of
the input particle given in parenthesis. The number of events is chosen to keep the run time of
each sample similar within each particle group. The standard deviation (o) of the measurements
is evaluated for each sample and o/(the mean CPU time) is required to be less than 0.5%.

Since one of the goals of the performance monitoring is to understand the changes in
computing performance, it is important to be able to conveniently inspect the behavior of the
new releases and to be able to compare it to that of the reference and previous releases on a timely
basis. The evolution of two most basic, but important performance metrics, i.e. the average CPU
time per event and the total memory footprint are shown in Figure 2 and Figure 3 for all releases
made during 2014. Summary of performance evaluation for each release is available within 48
hours. Unexpected changes in the CPU time greater than one percent are considered serious
and are reported to the relevant Geant4 working groups. Additional profiling data are examined
in such cases. The total number of geometrical steps and the total number of secondary tracks
produced are recorded to help decide whether performance changes are due to modifications
related to physics or geometry. Many other observables are available on the benchmarking and
profiling web page [13].

Since the release of Geant4 version 10 (December, 2013), a multi-threaded version of Geant4
(Geant4-MT) is available enabling the event-level parallelism. The primary goal of the design of
Geant4-MT was to reduce the total memory usage by sharing common data (such as physics data
and geometry), while maintaining the linearity of the event throughput versus the number of
threads. The scalability of the CPU time and memory performance in multi-threaded application
is evaluated by measuring event throughput (events per sec) and memory reduction as a function

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015)

IOP Publishing

Journal of Physics: Conference Series 664 (2015) 062021

doi:10.1088/1742-6596/664/6/062021

Sample Physics List B-Field Energy
Higgs->ZZ FTFP_BERT ON (4.0T) 14 TeV PYTHIA
ON (4.0T) 1GeV 5GeV 10 GeV 50 GeV
Electrons FTFP_BERT
OFF(0T) 1 GeV 5GeV 10 GeV 50 GeV
ON (4.0T) 1 GeV 5GeV 10 GeV 50 GeV
FTFP_BERT
OFF(0T) 1 GeV 5GeV 10 GeV 50 GeV
Pions- QGSP_BERT ON (4.0T) 1 GeV 5GeV 10 GeV 50 GeV
QGSP_BIC ON (4.0T) 1 GeV 5GeV 10 GeV 50 GeV
FTFP_INCLXX ON (4.0T) 1GeV 5GeV 10 GeV 15 GeV
Proto FTFP_BERT ON (4.0T) 1GeV 5GeV 10 GeV 50 GeV
ns
FTFP_INCLXX ON (4.0T) 1GeV 5GeV 10 GeV 15 GeV
Anti-Protons FTFP_BERT ON (4.0T) 1 GeV 5GeV 10 GeV 50 GeV

Figure 1. A set of (total 41) samples for different event types, physics parameters (lists) and
configurations used for Geant4 performance benchmarking and profiling.

Ratio - SimplifiedCalo higgs.FTFP_BERT.1400.4

12— — T T T T 1 T T
8 — + AMD Opteron 6128 @2.00 GHz 8
o o
R g
o 1.1 é
o =}
v v
2 . L
i N R £
s e s ! N ! i st : =
E ¢ g

= L]

[
z 09 =
© s
ke

0.8 L L L L L L L 1 L L 1 L L 1 L

100 700,00,0,500,80.430.490.30.490.,420.430.430.420.430.,7°0. 48y
Geant4 Version
Figure 2.

version normalized to a reference release.

Ratio - SimplifiedCalo higgs.FTFP_BERT.1400.4
[e e s e s

—=— After First Event

—=— After Last of Event

* o+ °* M
e v e s 4
e T ® e

. e 3 ¢ .

e »

1 1 1 1 1 1 1 1 1 1 1 1
100,700,700 It
50530053 0r530.030.380 030 080000y
Geant4 Version

0 I

Average CPU time vs. Geantd Figure 3. Total memory count vs. Geant4
version normalized to a reference release.

of the number of threads for selected event samples as shown in Figure 4 and Figure 5,
respectively. Performance of Geant4-MT is also evaluated on an Intel Xeon Phi coprocessor
(Many Integrated Cores (MIC) architecture, ~60 cores with 4-way hyper-threading and 8 GB

memory). The performance shows a good linearity

up to the maximum available number of

threads (> 200) as tested with the CMS geometry. Performance of Geant4-MT using a single
thread is compared to the same application run in sequential mode to estimate the overhead due
to multi-threading. For multi-threaded Geant4 applications, and for a given number of threads,
the profiling data are collected by the periodic sampling of the program counters (osspcsamp) of

Open|Speedshop which gives a low-overhead view of

where the (exclusive) time is being spent.

A more detailed description of Geant4-MT and its computing performance can be found in [3].

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062021 doi:10.1088/1742-6596/664/6/062021

Event Throughput - 5 GeV Memory Reduction - 5 GeV
§ 102_"| T T T T T T T T -_ 2- 1.6:--| T L T ‘:
£ [| —#— cmsExpMT | = 14 r —&#— RSS-SHARED A
ur o - K
= [| —#— cmeexp] E E —— VSIZE :
g r] o> 12
w - 1 g n o\ .
o 1 wf 1
@ E F 4
e o - 4
é 10F 1 =3 0.8 L K]
= F 3 [B]
- - = 0_6
-] s F]
i J = 04p . S
L J = r .
E 02r .
@ r J
1 1 1 E. 0 Lol |]
1 10 1 10
N Core N Core

Figure 4. The Event throughput of Geant4- Figure 5. The memory reduction of Geant4-
MT as the number of threads on AMD 32 core MT as the number of threads on AMD 32

machines (Opteron, 6128, 2.0 GHz, 4 CPU core machines (Opteron, 6128, Total 66 GB
sockets x 8 cores). memory.

5. Performance Analysis

Performance analysis usually requires specific domain knowledge as well as an excellent
understanding of computing architecture and programming language used for the application.
Understanding profiling data collected from Geant4 applications is critical for identifying sections
of code that cause changes in performance. It also aids in finding functions that consume too
much memory or CPU time and are in need of optimization.

Two important metrics provided by FAST (the CPU profiler) are the leaf and path counts
for a each encountered function. The leaf count is the number of times a function was observed
as the last entry in the call stack and is proportional to the amount of the (exclusive) time that
was spent executing the code of that function. The path count is the total number of times
the function was observed anywhere in the call stack and is proportional to the amount of the
(inclusive) time that was spent executing the code of that function plus the time spent executing
all the functions it calls.

In most of the cases, the functions responsible for major change in CPU performance are
visible in the function list when sorted by decreasing leaf count (“hot spots”). The same is
true for memory profiles when the function list is sorted by the decreasing memory footprint.
Samples of CPU profiling results from FAST are shown in Figure 6.

IgProf is used as a memory profiler. It provides snapshots of memory usage data at each
performance profiling interrupt (with the default rate of 100 Hz). There are three important
modes for measuring and analyzing application memory: the live mode probes the memory
that has not been freed on the heap, producing a snapshot of the heap, the maximum mode
which traces the largest single allocation by any function, and the maximum total mode which
accumulates the total amount of memory allocated by any function, producing a snapshot of
poor memory locality. The difference of live memory between N events provides information on
a potential memory leakage. An example of memory profiling using IgProf is shown in Figure 7.
IgProf provides a web-navigable display of memory profiling information utilizing an underlying
sqlite database as shown in Figure 7.

In addition to the full summary of the call stack and memory footprint, a detailed call graph
analysis is available to Geant4 developers for further analysis. The profgraph tool within FAST
generates a graphical view showing function call relationships centered on a given function. The

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062021 doi:10.1088/1742-6596/664/6/062021

|
g4.9.6.r01
Simplified Calo
AMDOpteronProcessorél 28
__ieeeT5 Jog s o
__mEET54_8xp i
GAPhys icsVecior :CompuleValue o
lag UsualEqRbs: :Evaluale RheGivenB B
GLHEP:MT wis! Engine =1kt o]
G4 Propagaion nField: :Com puie Step o
wharager:Detine PhysicalStep Le nglh o
ongSiepGel Phys icallme mciionLe ngih [RC I
CHC kssicalR K Dum bSiepper -
G S eppingManage 1 Imoke FSDIR 0
vensalFlusiuation:: Sample Fluciua iors L]
18 SectionDalaSio Gel Cmas Seclion @
sinccs *®
GASteppinglanager: Sl epping -
avigator: : Locate GlobalPai mAndSet up -
Gl avigator: Com pule Step R =p
PosiSiepGei Phys icallnle mciionLe ngih L
4T oucheblke Higtory:-Gailolume

I | I
50000 100000 150000

leafcount

Figure 6. An example plot of CPU profiling using FAST: the list of top functions by the leaf
count, which is proportional to the exclusive time that was spent executing the code of the given
function.

. 0.36 344,628 344,638 568 658 1 1 GiKleinNishinaCompton: :SampleSecondar:
cou nter' MEM_LIVEI 6.43 414,854 1,848,280 Bed 3,575 1 1 GPrimaryTransformer:: GenerateSingleT
0.50 482,976 625,440 936 6,872 9 40 GiDecayProducts. :B4DecayProducts(64Dyr
0.57 546,950 1,424,160 1,060 z,760 4 5 G@PrimaryTransformer:: SeiDecayProduct:
sorted by self COSt .00 7,669,824 7,669,824 14,864 14,854 3 3 FreC ission: :PerformEmission
14.07 | 13,486,176 57,920,456 | 26,136 202,806 2 2 waueneratorprecompoundinterface::Prop:
39.33 | 37,703,088 46,386,909 | 73,068 238,491 5 7 | GkxcitationHandler: :BreakItlp(GAFragl
Sort by cumulative cost [19] | 65.75 | 63,833,528 8 | 122,158 122,158 | 173 179 | GaAllacatorPool : :Grow()
Total v
Rank o Self Calls Symbol name
6 | Callers |
36 23.40 8,022,592 9,840 JG4AllocatorPool: :Grow
42 18.24 6,255,000 140,152 gnu_cxx: :new_allocator<double>::allocate{unsigned long, void const*
54 12.72 4,362,152 25,130 HH < i ret > > r
51 11.78 4,038,528 9,708 GANuclearLevelManager: :UselevelOrMakeNew(GANuclearLevel*
66 4.79 1,643,440 5 G4hPairProduction::InitialiseEnergylossProcess (G4ParticleDefinition const*, G4ParticleDefi
73 4.20 1,440,504 351 G4VParticleChange: :G4VParticleChange()
84 3.40 1,164,194 30,717 std::basic_string<char, std::char_traits<char>, std::allocator<char> >:: Rep:: S createiun
115 1.92 657,376 2 GAMuPairProduction::InitisliseEnergylossProcess(G4ParticleDefinition const*, GAParticleDef
93 1.57 537,312 40 GAHadronElasticPhysics::ConstructProcess(
76 1.01 346, 664 1,173 GAEvaporationDefaultGEMFactory::CreateCchannel ()
160 0.94 323,136 612 G4VvScatteringCollision::G4VScatteringCollision()
161 0.94 322,000 35 GAFancy3DHucleus: :G4Fancy3Dhucleus
168 0.88 301, 008 6,271 std:: Rb_tree<GAString. std::pair<G4String const, G4ParticleDefinition*s>, std:: Selectlst<
179 0.79 271,584 2,314 std::vector<double, std::allocator<double> >:: M fill insert(anu_cxx:: normal_iterator<

Figure 7. An example of memory profiling information using IgProf: the live memory sorted
by the self cost. Each function in the table is web-navigable for its callers or callees

tool allows to adjust how many levels of the call stack are displayed and to filter out infrequently
used paths. Figure 8 shows an example of a call graph visualized using GRAPHVIZ.

6. Code Reviews

When needs arise, computational aspects of a subset of Geant4 classes are inspected and analyzed
in order to identify opportunities for improvements in performance as well as in code practices
and design. A particular module of Geant4 source codes is selected and inspected both visually

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062021 doi:10.1088/1742-6596/664/6/062021

x
¥
GdsSteppingManager::
DefinePhysicalSteplengthi) Mur;ﬂsls;r;sta(k
id: 182 _ -
F:111839 (0.460683) Pz 0
L:5500 (0.0226924) } . L
libGAtracking. so UnwindintolnvalidRange

GdeeToTwoGammaModel:; GAPEEffectFluaMadel:: GAPhyslcsVector:
CrossSectionPervolumel(__} CrossSectionPervolume|___} ComputaValue(_..}
2591 id: 397 id: 278 id: 177
Pi374 (000154057} P:510 (0.00210077) P20046 (0,0825727)
L:24 (9.88598e-05) L:245 (0.0010091%) L:8334 (0.0343291)
libGdprocesses. so lbGaprocesses. so libG4global so
*0 %] *5 Vaa
GdvProcass:: GdeeTaTwoGammaModel: Gd5andiaTable:: Gd PhysicsLogVector::
ResetNumberOf nteractionLengthLeft{) ComputeCrossSectionPerElectrond...} GetSand laCofForMaterial(...) FindBInLocation...} const
i id: 3 id: 279 id: 235
F:8234 (0.0339172) P:368 (0.00151585) P265 {0L00109158) F:11432 (0.0470902)
L:385 (0.000162707) L:116 {D.000477822) L:265 {0.00109158) L1586 (0.00653299)
IbG4processes, so libGaprocesses,so libGAmaterials.so libGaglabal.se
‘m \1 1 370
CLHEP: CLHEP: *
MTwistEngine:: HepRandom:: log _init loglo
flat() geTheEngine() il: 68 id: 316 id: 236
id: 233 2 id: 245 P:17318 (0.0713356) P:1907 (000785524) P:14357 (0.0591 388}
P:A707 (0.0399847) P:1951 (0L00803648) L1267 {0000521897) L1907 {0.00785524) L1591 {0.00655358)
L:9707 (0.0399847) L:927 (0.00381846) Ibm.s0.6 lbGatrack.s0 likm 506
libGacihep.so libGacihep sa
#T 9 Fe 073
CLHEP:
anon:: __isnan _ leee754 _logld
theDefaulis() Wl 147 id: 237
id: 246 1951 | P: 767 {0.00315939) 12747 (0.0525069)
P:1276 (0.00525605) L:767 (0.00315939) L2545 (0.0104833)
L:1276 (0.00525605) lbm.s0.6 lbm.so.6
libGdclhep.so
724
_leee754 _log

id: 62
Pr26323 (0.108429)
L:26323 (0. 108429}

libm s0.6

Figure 8. A section of call graph using PROFGRAPH of FAST.

and using a set of performance tools. The code reviewers provide not only general comments
on the class structure and design or coding practices, but also deliver code-specific observations.
Code reviews are usually performed in close collaboration with the code authors or maintainers
who are informed of important findings with a significant computational impact as soon as they
are discovered.

7. Summary
In this article, we described the Geant4 computing performance benchmarking and monitoring
procedure, and presented examples of performance results and analysis.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing

Journal of Physics: Conference Series 664 (2015) 062021 doi:10.1088/1742-6596/664/6/062021

References

[1] Allison J et al. 2006 “Geant4 Developments and Applications”, IEEE Transactions on Nuclear Science 53 No.
1 270-278.

[2] Agostinelli S et al. 2003 “Geant4 - A Simulation Toolkit”, Nuclear Instruments and Methods in Physics
Research A 506 250-303

[3] Ahn S et al. 2014 “Geant4d-MT: bringing multi-threading into Geant4 production”, Joint International
Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013, 04213

] Worldwide LHC Computing Grid, http://wlcg.web.cern.ch

] The FAST project, https://cdevs.fnal.gov/redmine/projects/fast

] The Ignominous Profiler http://igprof.org/index.html

] Open|Speedshop http://www.openspeedshop.org/wp

] TAU (Tuning and Analysis Utilities) http://www.cs.uoregon.edu/Research/tau/home.php

| HPCToolkit http://hpctoolkit.org/index.html

0] The CMS (Compact Muon Solenoid) experiment at CERN. http://cms.web.cern.ch

1] The R Project for Statistical Computing http://www.r-project.org

2] ROOT: An Object-Oriented Data Analysis Framework, Linux Journal, Issue 51, July 1998, ROOT
— A C++ framework for petabyte data storage, statistical analysis and visualization, Computer
Physics Communications; Anniversary Issue; Volume 180, Issue 12, December 2009, Pages 2499-2512.
https://root.cern.ch

[13] Geant4 Profiling and Benchmarking, https://gdcpt.fnal.gov/perfanalysis/g4p/index.html

[14] The Wilson Cluster at Fermilab, http://tev.fnal.gov/hardware.shtml

